Berkovich Spaces Embed in Euclidean Spaces

نویسندگان

  • EHUD HRUSHOVSKI
  • BJORN POONEN
چکیده

Let K be a eld that is complete with respect to a nonarchimedean absolute value such that K has a countable dense subset. We prove that the Berkovich analyti cation V an of any d-dimensional quasi-projective scheme V over K embeds in R. If, moreover, the value group of K is dense in R>0 and V is a curve, then we describe the homeomorphism type of V an by using the theory of local dendrites.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

$L_1$-Biharmonic Hypersurfaces in Euclidean Spaces with Three Distinct Principal Curvatures

Chen's biharmonic conjecture is well-known and stays open: The only biharmonic submanifolds of Euclidean spaces are the minimal ones. In this paper, we consider an advanced version of the conjecture, replacing $Delta$ by its extension, $L_1$-operator ($L_1$-conjecture). The $L_1$-conjecture states that any $L_1$-biharmonic Euclidean hypersurface is 1-minimal. We prove that the $L_1$-conje...

متن کامل

Spatial Analysis in curved spaces with Non-Euclidean Geometry

The ultimate goal of spatial information, both as part of technology and as science, is to answer questions and issues related to space, place, and location. Therefore, geometry is widely used for description, storage, and analysis. Undoubtedly, one of the most essential features of spatial information is geometric features, and one of the most obvious types of analysis is the geometric type an...

متن کامل

Topology of Nonarchimedean Analytic Spaces and Relations to Complex Algebraic Geometry

This note surveys basic topological properties of nonarchimedean analytic spaces, in the sense of Berkovich, including the recent tameness results of Hrushovski and Loeser. We also discuss interactions between the topology of nonarchimedean analytic spaces and classical algebraic geometry.

متن کامل

A Nonmetric Embedding Approach to Testing for Matched Pairs

We consider the problem of matched pair hypothesis testing, i.e., the problem of determining whether or not a pair of disparate feature vectors correspond to a common object. Our approach relies on measures of pairwise dissimilarity in the respective feature spaces. We use three-way nonmetric multidimensional scaling to embed a training set of matched pairs in a low-dimensional Euclidean space,...

متن کامل

Learning Curved Manifolds The World is not always Flat or Learning Curved Manifolds

Manifold learning and finding low-dimensional structure in data is an important task. Many algorithms for this purpose embed data in Euclidean space, an approach which is destined to fail on non-flat data. This paper presents a non-iterative algebraic method for embedding the data into hyperbolic and spherical spaces. We argue that these spaces are often better than Euclidean space in capturing...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012